

Selective editing and automated correction of micro data in the SBS, Norway

Jakob Kalko, Statistics Norway

Agenda

- Background
- Editing of enterprises R-type consistency indicator
- Editing of MEE's (multiple establishment enterprises) P-type consistency indicator
- Automated correction of SBS data

Background

- For years, large focus at micro level. Flagging of soft/absolute errors.
 Too much editing at microlevel?
- Publishing of current SBS: t +17 months.

Several reasons for improving this:

- relevance of the data in general
- give NA access to data earlier
- future demands from Eurostat concerning earlier delivery of data?
- increased demand to effectiveness within SSB

Enterprises. R-type consistency indicators

- Statistical unit is enterprise. Unweighted indicators at micro level are established, showing the development in the relationship between two selected variables in year t and t-1
- Weighted indicators at micro level are established, giving higher weights to large units (measured by employment or man-years)
- Indicators are established at macro level (2-5 digit NACE), based on indicators at micro level
- We choosed to focus on three indicators and one total indicator, based on the three indicators.

R-type consistency indicator - micro level

Target variable: Employment

Auxiliary variable: Man-years.

• Un-weighted R-type consistency indicator (R_{em}) :

 R_{em} = (employment t / man-years t) / (employment t-1 / man-years t-1)

Weighted R-type consistency indicator (R_e)

Weight (w):
$$\sqrt{Employment t} / \sqrt{10}$$

• $R_e = R_{em}^{w}$

R-type consistency indicator - micro level

Target variable: Wages

Auxiliary variable: Man-years.

• Un-weighted R-type consistency indicator (R_{vm}) :

 R_{vm} = (wages t/man-years t) / (wages t-1 / man-years t-1)

Weighted R-type consistency indicator (R_a)

Weight (w):
$$\sqrt{man - years t} / \sqrt{10}$$

• $\mathbf{R}_{\mathbf{a}} = \mathbf{R}_{\mathbf{vm}}^{\mathbf{w}}$

R-type consistency indicator - micro level

Target variable: Turnover

Auxiliary variable: Employment

• Un-weighted R-type consistency indicator (R_{te}) :

 R_{te} = (turnover t / employment t) / (turnover t-1 / employment t-1)

Weighted R-type consistency indicator (R_t)

Weight (w):
$$\sqrt{Employment t} / \sqrt{10}$$

• $R_t = R_{te}^{W}$

Total weighted R-type consistency indicator

- Total weighted R-type consistency indicator (R_{tW})
- $R_{tW} = (\mathbf{R}_e \times \mathbf{R}_a \times \mathbf{R}_t)^{1/3}$
- At micro level a R-indicator=1, indicates no change in the relationship between the target variable and auxiliary variable

R-type consistency indicator, macro level

- Given a R-type consistency indicator R for the e-th unit, in the n-th NACE
- Let s_{ne} = turnover for the e-th unit, in the n-th NACE
- Let S_{ne} = turnover for the population for the units e=1,2...E , in the n-th NACE
- $W_e = s_{ne} / S_{ne}$
- R-type consistency indicator, macro level (R_m) for R_t : $R_m = \sum_{e=1}^E W_e \log_{10}(R_t)$.
- $R_m = 0$ indicates no change at macro level

Practical use of R-type consistency indicator

- Preliminary data 2011
 - 3. digit nacegroups with R>0,1 were listed out
 - Enterprises within these nace groups were listed out, including the R-indicator.
 - Units with unreasonable indicators were examined/corrected
 New lists were created. Editing stopped when indicator became stable
 - The R-indicators (turnover/employment) and the total weighted indicator showed up to be especially useful

P-type consistency indicator

- Is made for MEE's and is measuring the development in the relationship between two selected variables in year t and t-1
- Takes into account the weights of the variables measured in the MEE in the referenceperiods t and t-1 (Fischer index)
- Practical use: No practical experience but intention is to follow the same principles as for the R-indicator:
 - MEE's where P-indicator differs significantly from 1 are localized. Establishments being the worst outliers in the MEE are listed and examined. New P-indicator is then created.

P-type consistency indicator – practical example

Establish- ment	Turnover (t)	Operation. costs (t)	Turnover (t-1)	Operation. costs (t-1)	R - indicator
K=1	18	15	20	12	0,7200
K=2	12	11	14	12	0,9350
K=3	35	28	34	35	1,2868
P Dir	65	54	68	59	1,0444

L-index: $(20/68) \times 0.72 + (14/68) \times 0.935 + (34/68) \times 1.2868 = 1.0477$

P-index: $(18/65) \times 0.72 + (12/65) \times 0.935 + (35/65) \times 1.2868 = 1.0649$

F-index: $\sqrt{1,0477} \times \sqrt{1,0649} = 1,0563$

P-indicator = F-index $/(P_{Dir}^{t-1,t}) = 1,0563/1,0444 = 1,0114$

Practical experiences – R and P-indicators

- The R-indicator R_t (turnover/employment) and the total weighted indicator R_{tW} showed up to be especially useful
- Indicators can not replace the administration of the population
- Reasonable indicators are not necessarily an indication of no significant changes in absolute variables (eg. mergers/splits)
- Unreasonable indicators might be correct (weak connection between variables creating the indicator, mergers/splits)

Practical experiences – R and P-indicators

- Ir-regular R-indicators in MEE's should be treated differently in the estimation of the P-indicator.
- No significant experience, using the P-indicator so far. Should consider further wether the current indicator gives us the information we need.

Automatic correction of SBS data

- Basic idea: Replace manual corrections of certain variables in MEE's with automatic corrections, to increase productivity
- Following variables are received broken down from enterprise level to establishment level through the SBS survey:
 - Employment, wages, turnover, operational costs and gross investments.
- Only wages, turnover and operational costs are automatic corrected
- Variables are only corrected if they do not sum up to enterprise level

Automatic correction of SBS data

- New distribution of data among establishments:
 - using keys based on the raw data or
 - using keys based on an alternative distribution based on year t-1
- Wages are corrected, based on man-years
- Turnover is corrected, based on employment
- Operational costs are corrected, based on turnover

Automatic corrections – practical example

Period	t	t-1	t	t-1
Establishments	Employment	Employment	Turnover, raw data	Turnover
1	2	4	4.468	7.561
2	2	1	2.431	840
Sum, establish.	4	5	6.899	8.401
Sum, enterprise	4	5	8.985	8.401
Difference	0	0	- 2.086	0

Establishments	Alternative suggested distributrion, Turnover
1: (7.561/4) x 2	3.780,5
2: (840/1) x 2	1.680,0
Sum	5.460,5
Difference	5.460 - 8.985 = -3.524,5

Automatic corrections – practical example

- Distribution of turnover in this example will be based on the distribution of raw data.
- Sum of turnover should = 8.985 (enterprise level)

Establishment	Turnover, raw- data	Distribution	Corrected turnover
1:	4.468	0,648	5.819
2	2.431	0,352	3.166
Sum	6.899	1,000	8.985

Automatic corrections - experiences

- Increased effectivenes, editing large MEE's
- In MEE's where data for only one establishment is given, no automatic corrections are done for the other establishments
- MEE's in industries with weak connection between turnover and employment should be paid extra attention
- Establishments founded in year t-1 might have a different relationship between variables in year t. May lead to errors in the automatic correction
- In the long run automatic corrections may be based on earlier automatic corrections. Problem ? Solutions ?